
JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 21, NO. 12, DECEMBER 2003 3029

Crosstalk, Noise, and Stability Analysis of DWDM
Channels Generated by Injection Locking Techniques

B. Cai, L. A. Johansson, C. F. C. Silva, S. Bennett, and Alwyn J. Seeds, Fellow, IEEE

Abstract—In this paper, theory and experimental results for
wavelength-division-multiplexing (WDM) channel generation,
formed by multi-line optical injection locking, is presented.
A small-signal model to deal with wide-spectral-band optical
injection problems has been developed. Based on this model, the
crosstalk noise of an injection-locked laser in a coherent WDM
system is assessed analytically. Experimental results on locking
range, stability, and crosstalk noise confirms the modeling results,
which indicate that stable and low-noise channels can be generated
by this approach.

Index Terms—Optical injection locking, optical transmitters,
wavelength-division multiplexing (WDM).

I. INTRODUCTION

MOST current commercial dense wavelength-division
multiplex (DWDM) systems operate with 2.5- or

10-Gb/s channel capacity. Due to a number of optical fiber and
optical device impairments, the narrowest channel spacing used
is currently 50 GHz. These figures lead to commercial spectral
efficiencies limited to 0.2 b/s/Hz.

One option to increase spectral efficiency is to increase the in-
dividual channel capacity to 40 Gb/s. The technology involves
utilization of high-complexity components, with technological
and physical impairments regarding group velocity and polar-
ization mode dispersion in fiber, leading to limitations on the
achievable transmission distance [1].

Another option is to reduce channel spacing. Apart from
nonlinear interactions between the modulated optical carriers
and the fiber-optic transmission medium, limitations here
arise also from DWDM components. When reducing channel
spacing to 25 GHz or less in a 10-Gb/s system, strict tolerances
for center wavelength drift of components and lasers over oper-
ating temperature, aging, and measurement uncertainties apply.
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First, the passive control of several hundred fixed wavelength
lasers within such a tight margin easily becomes impractical.
Second, the technical difficulty of fast and accurate wavelength
allocation for wavelength agile components also increases with
the reduced channel spacing.

One approach that can overcome the above difficulties is the
use of a coherent channel forming scheme [2]. In a densely
spaced wavelength-multiplexing transmission system, channels
can be formed by injection locking a group of lasers to an op-
tical comb, as shown in Fig. 1. Two absolute frequency refer-
ences drive the optical frequency comb generator to produce an
output spectrum with exactly spaced comb lines and absolutely
stable central wavelength [3]. The former is set by a synthe-
sized microwave reference, with frequency stability 1 Hz. The
latter is set by a reference laser stabilized by atomic or molec-
ular absorption techniques, which can achieve stability 0.2
kHz. The generated optical comb spectrum is then utilized as
a stable frequency reference for fixed wavelength or tunable
optical sources, forming optical channels by optical injection
locking. The principle has been demonstrated using four input
spectral lines from a laser, intensity modulated at 1 GHz [4].

Injection-locking techniques have been used for spectral
control and frequency stabilization of semiconductor lasers
since 1980 [5], [6] and provide promising results in various
areas [7]–[10]. Much theoretical work has been performed to
reveal the properties of injection-locked semiconductor lasers
[11]–[14]. The case of a slave laser under injection from several
laser sources is analyzed in [15]. In most of the work, it is
assumed that injected light is concentrated in a narrow spectral
line and, therefore, can be considered as quasi-monochromatic
light, that is, a monochromatic signal with small amplitude
or phase noise. The noise is assumed to be sufficiently small
that small-signal approximation will be valid. However, in this
application, such an assumption is no longer valid. In this case,
the optical injection power is distributed in a group of evenly
spaced spectral lines, which represent different channels, and
the slave laser is locked onto a selected channel. The nonse-
lected channels will to some degree influence the output of the
slave laser. In a real system, this influence will be described as
crosstalk noise between channels. With a channel spacing as
small as 10 GHz, such noise may not necessarily be negligible.
On the other hand, however, the spacing between channels is
far too large for the noise to be estimated with a conventional
single-frequency small-signal approach.

The locking stability is another important issue to be ad-
dressed, as it has a direct impact on the reliability and design
of a DWDM system. In this case, although the influence of
adjacent channels that are far beyond the slave laser locking
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Fig. 1. Proposed scheme.

range can be ignored, the characteristics of distributed feedback
(DFB) lasers have to be taken into account.

In this paper, the single-frequency small-signal model has
been extended to cover the multichannel strong injection case
and estimate the crosstalk noise. When a laser is locked on a se-
lected channel, not only the relatively small noise in that channel
but also the adjacent channels, which have considerable injec-
tion power but are separated by far more than the locking range
from the selected channel, can be treated with the small-signal
approach.

This paper is structured as follows. In Section II and III,
numerical and analytical models for noise and stability for
Fabry–Pérot (FP) lasers are presented as the foundation of fur-
ther analysis. Based on this foundation, analytical modeling of
DFB lasers using the effective parameter approach is performed
in Section IV. Experiments to validate the theory and their
results are also presented and compared with the theoretical
model in Section IV.

II. FP LASERS WITH WIDE SPECTRAL OPTICAL INJECTION

A. General Rate Equations and Large Signal Solutions

Due to the presence of much stronger injection optical power,
the slave laser spontaneous emission can be ignored. If we ex-
press the electric field with a reference frequency and com-
plex amplitude as , the laser cavity rate equa-
tions in electric field-carrier number format are [16]

(1)

(2)

where is the electric field of injected light at the slave laser
facet centralized at a reference frequency ,

is the gain per unit time, is
the differential gain, and are the carrier population and
its free running value, is the parameter standing
for spectral hole burning and lateral carrier diffusion, and
are the total photon number in the cavity and its free running
value, and are the photon and spontaneous carrier life-
times,
is the effective frequency offset from the laser free-running lon-
gitudinal mode angular frequency , is the laser linewidth
enhancement factor, reflects photon-induced refractive index
change and is normally considered equal to for FP lasers,
is the laser cavity round-trip time, and is the carrier injection
rate.

We can simplify (1) and (2) using the above relations to have

(3)

and

(4)
and

(5)

where is permeability in vacuum, is light emission
frequency, is light speed in a vacuum, and is the group
refractive index of laser waveguide. Equations (3) and (4)
are a set of nonlinear differential equations and can be linked
by (5) and solved numerically in the time domain using the
Runge–Kutta–Fehlberg method for a variety of injection .
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B. Small-Signal Assumption and Linearization

Although the solution can be found by simply solving the
above large signal nonlinear differential equation set numeri-
cally, a simple analytical solution is preferred to identify clearly
the influence of each individual parameter and derive the models
for more complicated lasers such as DFB lasers. Such a solu-
tion can be obtained by proper small-signal assumptions and
linearization of (1) and (2).

When the injected optical power is not concentrated at
a single frequency , the injection field can be written as

, where is a constant representing
the noise-free injection field at frequency ; is a
function of time representing the injection field at the other
frequencies. Instead of requiring itself to be small,
we require that the perturbance induced by the perturbation
field in the slave laser be small. This requirement
can be met if satisfies either of the following: 1) its
amplitude is much smaller than or 2) it is far away
from the the slave laser locking frequency range. Under both
situations, the slave laser will be effectively locked with ,
and the perturbance caused by in the slave laser can
be dealt with small-signal approximation. To apply such an
approximation and linearize (1) and (2), let ,

,
, and , where , , ,

and are the steady-state solutions of , , , and
when the slave laser is locked on without the perturbation
injection field ; and are the slave laser field and
carrier number deviation from their steady-state values
and caused by the perturbation injection . To keep
the completeness of the analysis, we also introduce as
the carrier injection rate perturbance, similar to . The
small perturbance requirement will be met if satisfies
either of the following: 1) it is much smaller than or
2) its frequency is much higher than the carrier dumping rate
defined as . The steady-state equations are
obtained from (1) and (2) by assuming perturbance-free photon
and carrier injections , and using the
steady-state conditions ,

(6)

(7)

where is the steady-state gain. Under the first-order approx-
imation, the optical power change due to the perturbation injec-
tion can be linked to the slave laser field by

(8)

Using (6)–(8) and the above definitions, (1) and (2) can be
linearized as

(9)

(10)

defining and as the
complex differential and nonlinear gain to reflect the influence
of carrier and photon numbers on the real and image parts of the
index, (9) and (10) can be rewritten as

To simplify the above equations further, we normalize the
field with and time with

(11)

(12)

or in matrix format

(13)

where

(14)

C. The Range and Stability of the Locking

With close examination of (6) and (7), we find that , ,
and only have real value solutions within a certain range.
This can be interpreted as the range in which the injected light
has significant influence on the and of the lasing mode.
This range is normally defined as the locking range. Equation
13 is valid only when the injection is within the locking
range. When , the locking range is simply defined by

(15)

and the expression will become much more complicated for
.
Within the locking range, the locking may not necessarily be

dynamically stable. As a linear system defined by (13), the dy-
namic stability of the slave laser can be assessed from its char-
acteristic matrix . For a dynamically stable system, the eigen-
values of must fall into the first and fourth quadrant of com-
plex plane.

D. Small-Signal Solutions in Frequency Domain

Equation (13) as linear system equations can be solved in the
frequency domain. Taking Fourier transform for both sides, we
have

(16)
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Fig. 2. DFB laser as a mirror with gain.

Notice here that Fourier transform properties for conjugate
complex function pair are used. Equation (16) is a general so-
lution for photon and carrier injection problems satisfying the
small perturbance approximation. The solution of (16) is quite
tedious but can be greatly simplified when the carrier injection
perturbance and the injection frequency detuning

. In such a case (16) can be solved as

(17)

where and

(18)
where and

are the decay rate
and angular frequency of relaxation oscillations.

III. DFB LASERS WITH DISTRIBUTED OPTICAL INJECTION

To deal with DFB and other lasers with complicated struc-
tures, we can use similar methods to those of Tromborg et al.
[17]. At one facet of the laser, we treat the laser as a active mirror
(shown in Fig. 2). Ignoring spontaneous emission, the emission
field can be expressed in frequency domain as

(19)

where is the equivalent reflectivity coefficient. With the first-
order approximation

(20)

where the static solution for noise-free injection is
, we have

(21)
For carrier number, the possible nonuniform local distribution
of carrier and photon, in general, has to been considered

(22)

where is photon density. If the perturbance can be approxi-
mately assumed uniform through the cavity and we let

(23)

(24)

(25)

(26)

(27)

by normalizing time and field by and , respectively, and
using the relation , we
have

(28)

(29)

It is noticed that (28) and (29) are identical with (11) and (12)
for FP lasers. With equivalent parameters defined in (23)–(27),
a DFB or other types of lasers with complicated longitudinal
structures can be treated as FP lasers. It is also noticed that
has a small imaginary part that reflects effective gain change
with emission optical frequency. Such an effect can be ignored
with a laser operating near longitudinal mode , as we did in
FP laser analysis.

The effective parameters , , , and the steady-state so-
lution of the total photon population and gain in the laser
resonator for different laser structures can be obtained with the
transmission-line method. In the Appendix, we detail the calcu-
lation for a typical DFB laser structure.

IV. MODELING AND EXPERIMENTAL RESULTS

A. Locking Range and Stability

When the adjacent comb lines are far beyond the slave laser
locking range, their influence can be ignored. Viewing the
entire laser as a mirror with gain and wavelength selectivity,
the effective reflection ratio, under the steady state, can be
calculated using a transmission-line approach [17] and is a
function of carrier density and detuning frequency .
For a given detuning frequency , the minimum injection
required for locking is determined by the minimum value
of . For a typical DFB laser (with
second-order grating, length of 322 m, effective index of
3.23, K factor of 23/cm, 0.2% and 30% reflection on its facets,
respectively, estimated linewidth enhancement factor of 5.4,
and internal loss of 50/cm), the locking range calculated in such
a way is plotted in Fig. 3. The small-signal equations [(9)–(12)
and (28) and (29)] only exist within such a range, given by the
area falling outside the regions marked as “unlocked” in the
figure.

Even within the locking range, due to the gain-index coupling
effect quantified by the Henry factor , the locking may not be
dynamically stable. With a small-signal approximation derived
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Fig. 3. DFB laser locking and stable range.

from the steady-state solutions, the dynamic locking stability is
determined by evaluating the eigenvalues of small-signal dif-
ferential equations. Away from very low or very high injection
ratio, the region of dynamically stable locking is significantly
reduced in comparison to the locking range calculated above,
as shown by the region marked “stable” in Fig. 3. Fig. 3 shows
good agreement between the calculated and measured results of
the locking and stable range of a typical DFB laser, with param-
eters as above.

It is interesting to observe that with very weak or strong in-
jection, the locking will be stable over the whole locking range.
For very weak injection, the injection-induced gain change in
the laser cavity is so small that the related index change becomes
insignificant. For the strong injection, the injection ratio is such
that the slave laser works almost like a semiconductor optical
amplifier.

When the adjacent lines fall within the locking range,
they will influence the locking stability. The steady-state
solution/small-signal approach can then no longer be used.
Fortunately, within a narrow spectral region, a DFB laser can be
simplified to an equivalent FP laser. With such simplification,
the related large signal rate equations can be solved numerically
in the time domain using the Runge–Kutta–Fehlberg method.
Fig. 4 shows that the locking becomes unstable when comb
spacing is reduced. Further results show that beyond the
locking range, adjacent lines have very little influence on
stability.

B. Channel Crosstalk

For comb spacing much greater than the locking range, the
adjacent lines do not affect the locking stability but do pass
through the slave laser and are present in the output causing
channel crosstalk noise. First, we estimate the crosstalk inter-
ference from only one adjacent channel. Assume that the op-
tical injection consists of two spectral lines, separated by fre-
quency , representing two channels. The frequency of one of
the spectral lines coincides with the locking center frequency,
that is, . Then, the injection field can be expressed as

. Taking and
(assuming no carrier injection perturbance) into (17),

we find that the crosstalk noise is distributed at two frequencies:
a main peak at frequency and a much weaker image peak

Fig. 4. FP laser large signal solutions.

Fig. 5. FP laser comparison of numerical and analytical approaches.

at frequency . The amplitude of the main peak at
is

(30)

The amplitude of the image peak at is

(31)

To validate the small-signal assumption applied in the above
equations, the large-signal nonlinear rate equations were solved
numerically using Runge–Kutta–Fehlberg finite-element inte-
gration methods [18] using representative parameters for an in-
jection-locked Hitachi HLP 1400 F-P type semiconductor laser,
given by laser emission wavelength m, cavity length

m, group refractive index , round-trip
time , internal distributed loss cm,
facet reflectivity , photon lifetime calculated by

, differential gain s, and spon-
taneous carrier lifetime ns. Default values for other
parameters are the linewidth enhancement factor , the
injection ratio for both channels dB,
and the steady-state laser output power mW. A com-
parison with the analytical small-signal approach, such as in
Fig. 5, shows a good agreement. The numerical solution for
even smaller channel spacing at the same injection ratio shows
that the locking becomes unstable and indicates the limits of the
model (Fig. 4).

The crosstalk noise of a typical DFB laser (with the second-
order grating, length of 322 m, effective index of 3.23, K factor
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Fig. 6. DFB laser crosstalk noise versus channel spacing.

Fig. 7. DFB laser crosstalk noise versus injection ratio.

of 23/cm, 0.2% and 30% reflection on its facets, respectively,
and estimated linewidth enhancement factor of 5.4, internal loss
of 50/cm) is also modeled. The crosstalk noise against various
parameters has been plotted in Figs. 6–8.

From (17), we find that the crosstalk noise is mainly con-
tributed by three mechanisms. The first, the perturbation injec-
tion field, feeds through the slave laser cavity, which acts as a
filter and is characterized by a transform function .
This mechanism is dominant for large channel spacing and only
contributes to the main noise peak, which coincides with the
perturbation injection field. The second mechanism, the pertur-
bance on the magnitude of the injection field, i.e., the injection
photon number, modulates the carrier number by changing car-
rier recombination time. Finally, the perturbance on the mag-
nitude of the injection field also modulates the gain due to gain
suppression effect. Those two mechanisms, quantified by
and and attenuated when fed through the cavity, con-
tribute to both main and image noise peaks and only become
dominant for small channel spacing, because of the long carrier
lifetime.

Another interesting result is that when the channel spacing is
further reduced (of course, the injection ratio must be very low
to meet the small perturbance requirements), a response peak
has been found around (Fig. 9). This is expected due to the
carrier–photon interaction described as the gain saturation re-
laxation mechanisms [19].

Fig. 8. DFB laser crosstalk noise versus linewidth enhancement factor.

Fig. 9. DFB laser crosstalk noise peak due to gain saturation relaxation.

Finally, we consider a multiple injection line situation. As-
sume there are a total of channels with equal spacing .
is the complex amplitude of the th channel and . The
slave laser is locked to the th channel. The output of the slave
laser will consist of a locked output signal at the th channel and
noise peak at all other channels. From (17), the noise amplitude
at the th channel is

As the noise declines with the very fast increase of frequency,
we only consider two strongest noise peaks at the 1 and 1
channels

If the channel reference is generated by FM sideband with
modulation index , we have

The total noise contribution from both peaks is
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Fig. 10. Comparison between calculated and measured results of relative
signal peak power.

Fig. 11. Optical frequency comb measured before SG-DBR laser.

Fig. 12. Superposed SG-DBR for 64 channel filtered output signal.

This is because for the FM signal, the total photon number is
always constant; therefore, the carrier and gain modulation con-
tributed by photon number perturbance do not occur. This also
implies that the crosstalk range for each channel is limited to
its immediate neighbors. Experiments were carried out to verify
the modeling results. The results, plotted in Fig. 10, show a good
agreement between the model and experiments.

Finally, Figs. 11 and 12 show the results of a practical imple-
mentation of the proposed system shown in Fig. 1. Fig. 11 shows

Fig. 13. Transmission-line model of laser structure.

the optical spectrum of the injected signal: the output of an op-
tical comb generator with a comb line spacing up to 25 GHz,
here 18 GHz, covering more than 1 THz total frequency range
[20]. Fig. 12 shows 64 adjacent superimposed channels formed
by injection locking of a widely tunable sampled-grating DBR
laser to the optical comb generator spectra. Adjacent channel
crosstalk is seen to be suppressed by at least 30 dB for all 64
channels [3].

V. CONCLUSION

In this paper, we have described a novel approach for WDM
channel generation. A small-signal model to deal with wide
spectral band optical injection problems has been developed.
Based on this model, the crosstalk noise of an injection locked
laser in a coherent WDM system is assessed analytically. The
results show that the noise is contributed by adjacent injection
line “passthrough” effect, carrier number modulation effect, and
gain suppression effect. The results also indicate that for injec-
tion lines generated by FM side bands, the crosstalk noise is
only caused by injection line feed through the slave laser cavity
and the crosstalk range is limited to immediate adjacent chan-
nels. The static locking range and dynamic stability related to
this approach have also been discussed. Experimental results on
locking range, stability, and crosstalk noise have confirmed our
modeling results, which indicate that stable and low-noise chan-
nels can be generated by this approach.

APPENDIX

TRANSMISSION LINE DESCRIPTION OF DFB LASERS

In DFB or, in fact, any laser structures, the laser resonator can
be divided into many small sections, as illustrated by Fig. 13.
Each section has uniform refractive index, gain, loss, photon
density, carrier density, and carrier injection rate. The electro-
magnetic field in each section, then, can be determined by trans-
ferring the border conditions (i.e., optical emission and injection
at laser output facets) to relevant sections. The transfer matrix
for section i reads
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where , , , and
, , , and are the refractive index, absorption, gain co-

efficient, and length of section i. The relationship of the electric
field between section i and 1 is

For a laser with sections, the steady solution can be ob-
tained by solving

At the output side , the above equation becomes

and
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